Enhanced transport and transistor performance with oxide seeded high-κ gate dielectrics on wafer-scale epitaxial graphene.

نویسندگان

  • Matthew J Hollander
  • Michael Labella
  • Zachary R Hughes
  • Michael Zhu
  • Kathleen A Trumbull
  • Randal Cavalero
  • David W Snyder
  • Xiaojun Wang
  • Euichul Hwang
  • Suman Datta
  • Joshua A Robinson
چکیده

We explore the effect of high-κ dielectric seed layer and overlayer on carrier transport in epitaxial graphene. We introduce a novel seeding technique for depositing dielectrics by atomic layer deposition that utilizes direct deposition of high-κ seed layers and can lead to an increase in Hall mobility up to 70% from as-grown. Additionally, high-κ seeded dielectrics are shown to produce superior transistor performance relative to low-κ seeded dielectrics and the presence of heterogeneous seed/overlayer structures is found to be detrimental to transistor performance, reducing effective mobility by 30-40%. The direct deposition of high-purity oxide seed represents the first robust method for the deposition of uniform atomic layer deposited dielectrics on epitaxial graphene that improves carrier transport.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors

Deposition of high-κ dielectrics onto graphene is of significant challenge due to the difficulties of nucleating high quality oxide on pristine graphene without introducing defects into the monolayer of carbon lattice. Previous efforts to deposit high-κ dielectrics on graphene often resulted in significant degradation in carrier mobility. Here we report an entirely new strategy to integrate hig...

متن کامل

High - κ dielectrics for advanced carbon - nanotube transistors and logic gates

H igh-κdielectrics have been actively pursued to replace SiO 2 as gate insulators for silicon devices 1. The relatively low κ of SiO 2 (at 3.9) limits its use in transistors as gate lengths scale down to tens of nanometres. High-κ gate insulators afford high capacitance without relying on ultra-small film thickness, thus allowing for efficient charge injection into transistor channels and meanw...

متن کامل

Fabrication of top-gated epitaxial graphene nanoribbon FETs using hydrogen-silsesquioxane

Top-gated epitaxial graphene nanoribbon (EGNR) field effect transistors (FETs) were fabricated on epitaxial graphene substrates which demonstrated the opening of a substantial bandgap. Hydrogen silsesquioxane (HSQ) was used for the patterning of 10 nm size linewidth as well as a seed layer for atomic layer deposition (ALD) of a high-k dielectric aluminum oxide (Al2O3). It is found that the reso...

متن کامل

16 Hafnium - based High - k Gate Dielectrics

Scaling of silicon dioxide dielectrics has once been viewed as an effective approach to enhance transistor performance in complementary metal-oxide semiconductor (C-MOS) technologies as predicted by Moore’s law [1]. Thus, in the past few decades, reduction in the thickness of silicon dioxide gate dielectrics has enabled increased numbers of transistors per chip with enhanced circuit functionali...

متن کامل

Graphene Transistors for Ambipolar Mixing at Microwave Frequencies

This work presents a detailed study of the graphene RF mixer in the ambipolar configuration, using quasi-free-standing epitaxial graphene on SiC. Record high conversion gain is achieved through use of optimized growth and synthesis techniques, metal contact formation, and dielectric materials integration. Hydrogen intercalation is utilized to isolate the graphene from the underlying SiC substra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 11 9  شماره 

صفحات  -

تاریخ انتشار 2011